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Abstract 

We use a. new simulation technique[l], that allows us to cal
culate the beam-beam kick from non-Gaussian beams, to 
discrimina.te between the predictions of two different the" 
reticaJ models. Our results are in agreement with one of 
these models. We employ the simulation to better under
stand the nature of the coherent effects, and to explore their 
dependence on damping. We discuss the drawbacks in the 
other model and suggest improvements. 

1 Introduction 

One of the factors limiting the luminosity of e+ e- stor
age ring colliders is the beam-beam interaction. There 
has been much speculation on the role of coherent (or 
collective) beam-beam effects as a mechanism for limit
ing the tune-shift parameter, but no consensus has been 
reached on this issue[2]. Coherent dipole motion, where 
the centroids of the two beams oscillate relative to each 
other, is conunonly observed in operating storage rings, 
but there is no evidence that it affects luminosity. Such 
centroid motion is easily detected and could be removed 
with feedback . The potential for performance limita
tions comes from coherent effects that distort the beam 
shape. 

2 Theoretical Models 

These coherent quadrupole effects have been analyzed 
with two different types of models. In the nonlinear 
map (NM) models , of Hirata[3] and of Chao, Furman, 
and Ng[4], nonlinear maps for the colliding system are 
developed in the moments of the distributions and it
erated on a computer to find the equilibrium solution. 
Here we consider only Hirata's model, because it is closer 
to the physics we wish to study. In earlier work Hirata 

starts with Gaussian beams and calculates the beam
beam kick using the formula of Bassetti and Erskine[5] . 
However the assumption that the beams keep their Gaus
sian form is inconsistent witb the nonlinear nature of the 
kick. He finds flip-flop solutions, in which the beams 
maintain fixed but unequal sizes. Later attempts at in
cluding higher moments were in substantial agreement 
with the Gaussian calculation . 

In the Vlasov-equation (VE) model, of Chao and 
Ruth[6], and of Dikansky and Pestrikov[7], the phase
space distributions of the two beams influence each other, 
and modes develop in phase-space. The stability of these 
modes is analyzed using the linearized Vlasov equation, 
assuming small perturbations from equilibrium. Their 
results are characterized by the appearance of even-order 
coherent resonances, leading t.o period-n beam-size os
cillations. The widths of these resonances, i.e. the range 
of beam-current over which these coherent effects occur, 
are finite, and there are sharp thresholds for their onset. 
However there remain questions about some of the as
sumptions that go into the theory, as well as about the 
effects of including radiation and Landau damping. 

3 Simulation Technique and Results 

Recently we developed a simulation program[l] to ex
plore the consequences to coherent beam-beam dynam
ics of being able to calculate fields from non-Gaussian 
beam-distributions. The program is strong-strong and 
two-dimensional (there is no longitudinal dynamics). Ra
diation damping and quantum excitation effects are put 
in once a turn and at one point in the ring. The beam
beam algorithm is general, making no assumption about 
the beam-distribution ; the test particles are cast onto a 
polar grid and their net electric field is calculated[8]. 
The beams start out round and, though they are not 
constrained to remain so, the algorithm fails if the beam-



profiles develop substantial eccentricity; in the results 
presented below this never happened . Typical parame
ters are given in Table 1. 

Table 1: Typical parameters used in the simulations 

Energy (Eo) 
Revolution Period (To) 
Transverse Emittances «. = <.) 
Amplitude Functions (f3; = f3;) 
Betatron 'limes (Q. = Q.) 
Damping Decrement (6) 
Current (1) 
Nominal Beam-Beam Parameter ({o) 
Number of test particles 

5.3 GeY 
2.56 !,sec 
1 x 10-7 m 

3cm 
0.67 

1 x 10-3 

35 rnA 
0.1225 
10000 

The results of the simulation are summarized in Fig
ure 1. Essentially, they are in agreement with the YE 
model: at tunes close to resonant values we find the dy
namics determined by even-order coherent resonances 
of finite width, leading to period-n oscillations in the 
beam sizes. The magnitude of that width is a function 
of the distance away from the nominal resonant value. 
A careful search for odd-order resonances was fruitless . 
At other tunes the beams have equal sizes and there is 
no evidence of coherent motion - in particular there was 
no flip-flop motion. 

For the sixth-order resonance the period-3, anti cor
related nature of the beam-size oscillations is shown in 
Figure 2. A closer examination of the beam-distribution 
is illuminating. On a particular turn one beam has a 
dense core while the other is hollow (and therefore non
Gaussian) , forming a halo around the first. On the next 
turn the beams have comparable sizes, while on the third 
turn the first beam is hollow and the second dense. This 
three-fold pattern repeats indefinitely. For the eighth
order resonance there were similar period-4 oscillations. 

We emphasize that the appearance of these higher
order coherent resonances is a direct consequence of the 
general field calculation; these resonances are not ob
served with multi-particle simulations that assume Gaus
sian distributions in calculating the field. 

Dependence on Damping: The simulation permits 
us to go beyond the limitations of the YE model and 
consider the influence of radiation damping and fluctua
tion on the strengths of these resonances . The degree of 
damping is usually measured by the damping decrement 
6 - the average fractional energy emitted by a parti
cle, in one turn, as synchrotron radiation. We find that 
the strength of a given resonance decreases as () is in
creased. Further, the eighth-order resonance of Fig. 1 
disappeared at a higher damping of 6 = 1 X 10-4 • 
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The effects of damping are evinced in another way, in 
Fig 1, where the extrapolated widths of the resonances 
can be seen to go to zero before reaching the resonant 
tune. This is unlike the predictions of the VE model 
(where the widths are zero only at the resonant tune) 
and is a consequence of Landau damping amongst the 
particles being strong enough to suppress the outbreak 
of coherent oscillations. 
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Figure 1: Onset and offset values of {o as a function 
of Qp for the sixth-order (crosses) and eighth-order 
(plusses) resonances. In each case the region of coher
ent motion is between the lines. The resonance tunes 
are indicated by solid vertical lines. Note the difference 
in the damping decrement 6 for the two cases. 
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Figure 2: rms beam-size as a function of turn-number, 
for Qp = 0.79,{0 = 0.13, and 6 = 1 X 10-3 . The period-
3, anti-correlated nature of the size variations is evident. 



4 Discussion 

Some features of these resonances are worth empha
sizing. Firstly, their signature is a rapid, turn-tcrturn 
variation in the beam-size. Since most existing beam
size detectors are not sensitive to such swift variations, 
these resonances would not have been detected , and an 
increase in average beam-size would have been mistaken 
as being due to incoherent phenomena. We urge a closer 
search for these resonances. 

As mentioned earlier, the equilibrium beam distri
bution is strongly non-Gaussian, with a substantial de
crease in the overlap between the two beams - and 
consequently in the tune-shift parameter and luminosity 
of the collider. On the other hand, the strong depen
dence of the strength of these resonances on damping 
suggests that for machines with large damping, such as 
the heavy-quark factories under design, these resonances 
can easily be avoided. 

The non-Gaussian nature of the beam distribu tion 
also explains why the NM model is unsuccessful. Since it 
assumes Gaussian distributions and directly tracks sec
ond moments instead of individual test particles, it is 
inherently incapable of finding these period-n solutions. 
The VE model, on the other hand, explicitly assumes 
harmonic perturbations in the phase-space density, and 
hence effectively allows for non-Gaussian shapes. The 
close correspondence between the simulation results and 
the predictions of the VE is indicative of the importance 
of allowing the beams to relax into non-Gaussian modes. 

To compare with, and better understand, the results 
of the NM model, we performed a simulation that con
strains the beams to remain round and assumes a Gaus
sian distribution in calculating the beam-beam kick. We 
found that the equilibrium solutions were flip-flop ones 
- though near the quarter-integer resonance there were 
transient period-2 solutions. We thus find that by suit
ably constraining the dynamics it is possible to change 
the relative strengths of various fixed-point solutions, 
and affect the final outcome. 

Nonetheless, it needs to be stressed that if one al
lows for the non-Gaussian nature of real particle distri
butions in the calculation of the beam-beam force, then 
the period-n solutions predicted by the VE model are 
the dominant solutions, and are therefore the ones most 
likely to affect beam performance in storage rings. 

5 Conclusions 

Our simulations confirm the validity of the VE model 
and affirm the existence of period-n fixed-point solu-
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tions. Our study of the influence of damping on these 
resonances shows that for colliders with large damping, 
resonances beyond sixth-order will not be present. We 
find that the drawback with the NM model lies not in 
the technique, but in the assumption of Gaussian beams. 
We therefore suggest an extension of this technique to 
allow the distribution to take on non-Gaussian shapes. 

Of course, our results are for nearly-round beams 
and e+ e- colliders operate with flat beams. In Ref. [7J 
the authors find the same kind of resonances for flat 
beams. At present we are in the process of developing 
a technique that can handle non-Gaussian distributions 
and elliptic beam-profiles, and should soon be able to 
check their predictions. 

This work was supported by the Department of En
ergy, Contract No. DE-AC-03-76SF00098 and No. DE
AC03-76SF00515. 
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